Inductive Definitions and Fixed Points
Overview of Chapter

6. Inductive Definitions and Fixed Points
6.1 Inductively defined sets and predicates
6.2 Fixed point theory for inductive definitions
6.3 Specifying and verifying transition systems
6. Inductive Definitions and Fixed Points

Introduction

Constructs for defining types and functions
Isabelle/HOL provides two core constructs for conservative extensions:

1. Constant definitions
2. Type definitions

Based on the core construct, there are further constructs:

- Recursive function definitions (primrec, fun, function)
- Recursive datatype definitions (datatype)
- Co-/inductively defined sets (inductive_set, coinductive_set)
- Co-/inductively defined predicates (inductive, coinductive)
Motivation

Goals

- Learn about inductive definitions:
 \(\leadsto\) important concept in computer science!
 E.g., to define operational semantics.

- Learn the underlying fixed point theory:
 \(\leadsto\) fundamental theory in computer science!

- Learn how to apply it to transition systems
 \(\leadsto\) central modeling concept for operational behavior!
Section 6.1

Inductively defined sets and predicates
Introductory example

Informally:

- 0 is even
- If n is even, so is n + 2
- These are the only even numbers

In Isabelle/HOL:

```plaintext
-- The set of all even numbers
inductive_set even :: "nat set" where
zero [intro!] "0 ∈ even" |
step [intro!] "n ∈ even ⟹ n + 2 ∈ even"
```
inductive_set $S : : \"\alpha set\"$ where
"[[$a_1 \in S; \ldots; a_n \in S; A_1; \ldots; A_k]$ \implies $a \in S$] $|$
... $|$
...

where

- A_1, \ldots, A_k are side conditions not involving S and
- a is a term built from a_1, \ldots, a_n.

The rules can be given names and attributes as seen in definition of even.
Embedding inductive definitions into HOL

Conservative theory extension
From an inductive definition, Isabelle
 • generates a definition using a fixed point operator and
 • proves theorems about it that can be used as proof rules

The theory underlying fixed point definitions is explained in Subsect. 6.2.
Generated rules

Rules
Generated rules include

- the introduction rules of the definition, e.g.,

 \[0 \in \text{even} \quad (\text{even.zero}) \]

 \[n \in \text{even} \implies n + 2 \in \text{even} \quad (\text{even.step}) \]

- an elimination rule for case analysis
- an induction rule
Example 1:
Lemma: $4 \in \text{even}$
Proof: $0 \in \text{even} \implies 2 \in \text{even} \implies 4 \in \text{even}$

Discussion:
- Simple: Use $\text{even}\cdot\text{zero}$ and apply rule $\text{even}\cdot\text{step}$ finitely many times.
- Works because there is no free variable
Example 2:

Lemma: \(m \in \text{even} \implies \exists k. 2 \times k = m \)

Proof: Idea:

- For rules of the form \(a \in S \): Show that property holds for \(a \)
- For rules of the form \([a_1 \in S; \ldots; a_n \in S; \ldots] \implies a_0 \in S \): Show that assuming \(a_1 \in S; \ldots; a_n \in S; \ldots \) and property holds for terms \(a_1, \ldots, a_n \), it holds for term \(a_0 \)

Applied to \(\text{even} \), we have to show:

- \(\exists k. 2 \times k = 0 \): trivial
- Assuming \(n \in \text{even} \) and \(\exists k. 2 \times k = n \), show \(\exists k. 2 \times k = n + 2 \): simple arithmetic
Rule induction for even

To prove \(n \in \text{even} \implies P \ n \) by rule induction, one has to show:

- \(P \ 0 \)
- \(P \ n \implies P \ (n + 2) \)

Isabelle provides the rule even.induct:

\[
\begin{aligned}
\ll [n \in \text{even}; & \ P \ 0; \bigwedge n. \ P \ n \implies P(n + 2) \rr] \implies P \ n
\end{aligned}
\]
6. Inductive Definitions and Fixed Points
6.1 Inductively defined sets and predicates

Rule induction vs. natural/structural induction

Remarks:

• Rule induction uses the induction steps of the inductive definition and not of the underlying datatype! It differs from natural/structural induction.

• In the context of partial recursive functions, a similar proof technique is often called computational or fixed point induction.
Let S be an inductively defined set.

To prove $x \in S \implies P x$ by rule induction on $x \in S$, we must prove for every rule:

$$[[a_1 \in S; \ldots; a_n \in S]] \implies a \in S$$

that P is preserved:

$$[[P a_1; \ldots; P a_n]] \implies P a$$

In Isabelle/HOL: apply (induct rule: $S.induct$)
Inductive predicates

Isabelle/HOL also supports the inductive definition of predicates:

\[X \in S \implies S x \]

Example:

```
inductive even:: "nat ⇒ bool" where
  "even 0" |
  "even n ⟹ even (n+2)"
```

Comparison:

- predicate: simpler syntax
- set: direct usage of set operation, like \(\cup \), etc.

Inductive predicates can be of type \(\alpha_1 \implies \cdots \implies \alpha_n \implies bool \).
Further aspects

- Rule inversion and inductive cases (see IHT 7.1.5)
- Mutual inductive definitions (see IHT 7.1.6)
- Parameters in inductive definitions (see IHT 7.2)
Section 6.2

Fixed point theory for inductive definitions
Motivation

Introduction:
Inductive definitions can be considered as:

- Constant definition: define exactly one set \((\textit{semantic interpretation})\)
- Axiom system: except all sets that satisfy the rules \((\textit{axiomatic interpretation})\)
- Derivation system: show that an element is in a set by applying the rules \((\textit{derivational interpretation})\)

Isabelle/HOL is based on the semantic interpretation. In addition, it allows to use the rules as part of the derivation system.

Remark
The interpretations have advantages and disadvantages/problems.
Illustrating the problems

Problem of semantic interpretation:
We have to assign a set to any well-formed inductive definition.

Example:
Which set should be assigned to `fooset`:

```plaintext
inductive_set fooset :: "nat set" where
  "n ∈ fooset ⇒ n+1 ∈ fooset"
```

Problem of derivational interpretation
The rules of the definition are too weak. E.g., we cannot prove:

```
3 ∉ even
```
“Looseness” of rules

Problem of axiomatic interpretation:
There are usually many sets satisfying the rules of an inductive definition.

Example:
The following set even2 satisfies the rules of even:

```plaintext
definition even2 :: "nat set" where
  "even2 ≡ { n. n ≠ 1 }"

lemma "0 ∈ even2"
lemma "n ∈ even2 ⇒ n+2 ∈ even2"
```
Semantics of inductive definition

Definition
Let $f : T \Rightarrow T$ be a function. A value x is called a *fixed point* of f if $x = f \ x$.

Semantics approach for inductive definitions

Three steps:
- Transform inductive definition ID into “normalized form”
- “Extract” a fixed point equation for a function $F_{ID} : \alpha \ set \Rightarrow \alpha \ set$
- Take the least fixed point

Assumption

For every (well-formed) inductive definition, the least fixed point exists.
Transformation to “normalized form”

A “normalized” inductive definition has exactly one implication of the form:

\[
\text{inductive_set } S :: \alpha \text{ set} \quad \text{where} \\
\quad m \in (F_S S) \implies m \in S
\]

Example:

\[
\text{inductive_set even :: } \text{nat set} \quad \text{where} \\
\quad 0 \in \text{even} \quad | \\
\quad n \in \text{even} \implies n+2 \in \text{even}
\]

has the normalized form:

\[
\text{inductive_set even :: } \text{nat set} \quad \text{where} \\
\quad m \in \{m. m=0 \lor (\exists n. n \in \text{even} \land m=n+2)\} \implies m \in \text{even}
\]

That is, the function \(F_{\text{even}} \) is

\[
F_{\text{even}} \ nset = \{m. m=0 \lor (\exists n. n \in nset \land m=n+2)\}
\]
Fixed point equation and existence of fixed points

Fixed point equation for a “normalized” inductive definition:

\[F_S \ S = S \]

Existence of fixed points:

Unique least and greatest fixed points exist if

1. \(F_S \) is monotone, i.e., \(F_S \ S \subseteq S \) for all \(S \).
2. Domain (and range) of \(F_S \) is a complete lattice (Knaster-Tarski theorem)

Prerequisites are satisfied for inductive definitions, because

1. In inductive definitions, occurrence of \(x \in S \) must be positive, and this allows to prove monotonicity.
2. Set of sets are a complete lattice with \(\subseteq \) as ordering.
Definition (Supremum/infimum)
Let \((L, \leq)\) be partially ordered set and \(A \subseteq L\).

- **Supremum**: \(y \in L\) is called a *supremum* of \(A\) if
 \(y\) is an upper bound of \(A\), i.e., \(b \leq y\) for all \(b \in A\) and
 \[
 \forall y' \in L : ((y' \text{ upper bound of } A) \rightarrow y \leq y')
 \]

- **Infimum**: analogously defined, greatest lower bound
Complete lattices

Definition (Complete lattice)

A partially ordered set \((L, \leq)\) is a complete lattice if every subset \(A\) of \(L\) has both an infimum (also called the meet) and a supremum (also called the join) in \(L\).

The meet is denoted by \(\wedge A\), the join by \(\vee A\).

Lemma

Complete lattices are non empty.

Lemma

Let \(\mathcal{P}(S)\) be the power set of a set \(S\). (\(\mathcal{P}(S), \subseteq\)) is a complete lattice.
Existence and structure of fixed points

Theorem (Knaster-Tarski)

Let \((L, \leq)\) be a complete lattice and let \(F : L \to L\) be a monotone function. Then the set of fixed points of \(F\) in \(L\) is also a complete lattice.

Corollary (Knaster-Tarski)

\(F\) has a (unique) least and greatest fixed point.
We prove:
The set of all fixed points P of F, $P \subseteq L$, has the following properties:

1. $\bigvee P = \bigvee\{ y \in L \mid y \leq F(y) \}$
2. $(\bigvee P) \in P$
3. $\bigwedge P = \bigwedge\{ y \in L \mid F(y) \leq y \}$
4. $(\bigwedge P) \in P$

That is, $(\bigvee P)$ is the greatest and $(\bigwedge P) \in P$ the least fixed point.

Proof:
We show the first two properties. The proof of the third and forth property are analogous.
Proof of Knaster-Tarski Corollary (2)

Show: \(\bigvee P = \bigvee \{ y \in L \mid y \leq F(y) \} \) and \((\bigvee P) \in P \)

Let \(D = \{ y \in L \mid y \leq F(y) \} \) and \(u = \bigvee D \). We show:
\(u \in P \) and \(u = \bigvee P \), i.e., \(u \) is the greatest fixed point of \(F \).

For all \(x \in D \), also \(F(x) \in D \), because \(F \) is monotone and \(F(x) \leq F(F(x)) \).

\(F(u) \) is an upper bound of \(D \), because for \(x \in D \), \(x \leq u \) and \(F(x) \leq F(u) \), i.e., \(x \leq F(x) \leq F(u) \).

As \(u \) is least upper bound, \(u \leq F(u) \). Thus, \(u \in D \).

As shown above, \(u \in D \) implies \(F(u) \in D \), thus \(F(u) \leq u \).

In summary, \(F(u) = u \), i.e., \(u \) is a fixed point, \(u \in P \).

Because \(P \subseteq D \), \(\bigvee P \leq \bigvee D \), hence \(u \leq \bigvee P \leq u \), i.e., \(u = \bigvee P \).
Remark

Isabelle/HOL handles:

- lattices in Chapter 5 of theory Main
- complete lattices in Chapter 8 of theory Main
- inductive definitions and Knaster-Tarski in Chapter 9

The natural numbers are introduced in Chapter 15, using an inductive definition!
Some related definitions and lemmas in Isabelle/HOL

\[\text{mono } f \equiv \forall A B. \ A \leq B \longrightarrow f \ A \leq f \ B \]
\text{where } A, B \text{ are often sets and } \leq \text{ is } \subseteq \]
\[\text{lfp } f \equiv \inf \{ u \mid f \ u \leq u \} \]
\[\text{mono } f \implies \text{lfp } f = f(\text{lfp } f) \]
\[\llbracket \text{mono } f; f(\inf (\text{lfp } f) P) \leq P \rrbracket \implies \text{lfp } f \leq P \]
\[\text{gfp } f \equiv \sup \{ u \mid u \leq f \ u \} \]
\[\text{mono } f \implies \text{gfp } f = f(\text{gfp } f) \]
\[\llbracket \text{mono } f; X \leq f(\sup X (\text{gfp } f)) \rrbracket \implies X \leq \text{gfp } f \]
Section 6.3

Specifying and verifying transition systems
Motivation

Modeling

Behavior of software-controlled systems can be modeled

- by using a modeling language (UML, B, Z, ASM, ABS, Maude, ...)
- by formalizing the operational behavior as transition system

Transition systems

Transition systems are also a fundamental means for specifying

- the operational semantics of programming and modeling language (cf. Chap. 7)
- process calculi and concurrency
- computing architectures and hardware

Verification of transition systems cannot exploit program structure, but need other techniques.
Transition systems

Definition (Transition system)
A transition system (TS) is a pair \((Q, T)\) consisting of
- a set \(Q\) of states;
- a binary relation \(T \subseteq Q \times Q\), usually called the transition relation.
 Notation: \(q \rightarrow q'\)

(Other names: state transition system, unlabeled transition system)

Definition (Labeled transition system)
A labeled transition system (LTS) over \(Act\) is a pair \((Q, T)\) consisting of
- a set \(Q\) of states;
- a ternary relation \(T \subseteq Q \times Act \times Q\), usually called the transition relation.
 Notation: \(q \xrightarrow{\text{lab}} q', \text{ lab} \in Act\)

\(Act\) is called the set of actions or labels.
Remark

- The action labels express input, output, or an “explanation” of an internal state change.
- Finite automata are LTS.
- Often, transition systems are equipped with a set of initial states or sets of initial and final states.
- Traces are sequences $\langle q_i \rangle$ of states with $(q_i, q_{i+1}) \in T$ or sequences of labels.
- Behaviors are sets of traces (beginning at initial states).
- Properties are often expressed in appropriate logics (PDL, CTL ...).
Transition systems (3)

Lemma

Every LTS \((Q, T)\) over Act can be expressed by a TS \((Q’, T’)\) such that there is a mapping

\[
\text{rep} : Q \times \text{Act} \Rightarrow Q'
\]

with

\[
q_1 \xrightarrow{\text{lab}} q_2 \in T \iff \exists \text{lab}. \quad \text{rep}(q_1, \text{lab}) \rightarrow \text{rep}(q_2, \text{lab}) \in T'
\]

(Proof is a left as an exercise)
Modeling: Case study Elevator control system

Requirements

Design the control for an elevator serving 3 floors such that:

• Model:
 ▶ Elevator has for each floor one button which, if pressed, causes it to visit that floor. Button is cancelled when the elevator visits the floor.
 ▶ Each floor has a button to request the elevator. Button is cancelled when elevator visits the floor.
 ▶ The elevator remains in the middle floor if no requests are pending.
• Properties:
 ▶ All requests for floors from the elevator must be serviced eventually.
 ▶ All requests from floors must be serviced eventually.
6. Inductive Definitions and Fixed Points

6.3 Specifying and verifying transition systems

Modeling approach and motivation

- Direct modeling as a transition system:
 - without using a programming or modeling language
 - without using a library/theory

- Motivation:
 - Learn to construct models
 - Deepen the knowledge about transition systems
 - Understand the formalization of transition systems
Datatypes for facts and actions

```
datatype floor = F0 | F1 | F2          (* three floors *)

datatype action = Call floor                   (* input message *)
                | GoTo floor                    (* input message *)
                | Open                         (* output message *)
                | Move                         (* internal message *)

datatype direction = UP | DW                   (* up | down *)
datatype door = CL | OP                      (* closed | open *)

type_synonym state =
    action × floor × direction × door × (floor set)
    (* what, where, where to, door state, requests *)
```
Datatypes and actions: Transition relation

\[
\text{inductive_set } \text{tr} :: (\text{state} \times \text{state}) \text{ set where }
\]
\[
\begin{align*}
\[\text{g} \notin \text{T}; \neg (\text{f} = \text{g} \land \text{d} = \text{OP}) \] & \Rightarrow \\
& \quad \left((\text{a},\text{f},\text{r},\text{d},\text{T}), (\text{Call}\ \text{g},\text{f},\text{r},\text{d},\text{T}\cup\{\text{g}\}) \right) \in \text{tr} \\
\[\text{g} \notin \text{T}; \neg (\text{f} = \text{g} \land \text{d} = \text{OP}) \] & \Rightarrow \\
& \quad \left((\text{a},\text{f},\text{r},\text{d},\text{T}), (\text{GoTo}\ \text{g},\text{f},\text{r},\text{d},\text{T}\cup\{\text{g}\}) \right) \in \text{tr} \\
\text{f} \in \text{T} & \Rightarrow \\
& \quad \left((\text{a},\text{f},\text{r},\text{d},\text{T}), (\text{Open},\text{f},\text{r},\text{OP},\text{T}-\{\text{f}\}) \right) \in \text{tr} \\
\left((\text{a},\text{F1},\text{r},\text{d},\{\text{F0}\}), (\text{Move},\text{F0},\text{DW},\text{CL},\{\text{F0}\}) \right) & \in \text{tr} \\
\left((\text{a},\text{F1},\text{r},\text{d},\{\text{F2}\}), (\text{Move},\text{F2},\text{UP},\text{CL},\{\text{F2}\}) \right) & \in \text{tr} \\
\text{F0} \notin \text{T} & \Rightarrow \\
& \quad \left((\text{a},\text{F0},\text{r},\text{d},\text{T}), (\text{Move},\text{F1},\text{UP},\text{CL},\text{T}) \right) \in \text{tr} \\
\text{F2} \notin \text{T} & \Rightarrow \\
& \quad \left((\text{a},\text{F2},\text{r},\text{d},\text{T}), (\text{Move},\text{F1},\text{DW},\text{CL},\text{T}) \right) \in \text{tr} \\
\[\text{F1} \notin \text{T}; \text{F2} \in \text{T} \] & \Rightarrow \\
& \quad \left((\text{a},\text{F1},\text{UP},\text{d},\text{T}), (\text{Move},\text{F2},\text{UP},\text{CL},\text{T}) \right) \in \text{tr} \\
\[\text{F1} \notin \text{T}; \text{F0} \in \text{T} \] & \Rightarrow \\
& \quad \left((\text{a},\text{F1},\text{DW},\text{d},\text{T}), (\text{Move},\text{F0},\text{DW},\text{CL},\text{T}) \right) \in \text{tr}
\end{align*}
\]

©Arnd Poetzsch-Heffter et al. TU Kaiserslautern 321
Traces

Defining sets of infinite traces

types trace = "nat ⇒ state"

coinductive_set traces :: "trace set" where
"[[t ∈ traces; (s, t 0) ∈ tr]] ⇒
(λn. case n of 0 ⇒ s | Suc x ⇒ t x) ∈ traces"

(* Functions on traces *)

definition head :: "trace ⇒ state" where
"head t ≡ t 0"

definition drp :: "trace ⇒ nat ⇒ trace" where
"drp t n ≡ (λ m. t (n + m))"
Basic properties of traces

- **Lemma [iff]:** "\(\text{drp} (\text{drp} \ t \ n) \ m = \text{drp} \ t \ (n + m) \)"

- **Lemma drp_traces:** "\(t \in \text{traces} \implies \text{drp} \ t \ n \in \text{traces} \)"
More interesting properties

Expressing temporal properties of traces

- For every floor f: If f is a requested floor, the elevator will eventually reach the floor and open the door in f:

 $$\text{Always } (\ll To f \gg \rightarrow \text{Finally } (\ll Op \gg \text{ and } \ll At f \gg))$$

 Could be directly expressed over traces

- Alternative: Temporal logic, e.g., linear TL:
 - Formulas built with $Atoms$, \neg, \land, \Box, \Diamond
 - Interpretations: Kripke structures (Q, I, T, L)
 - A transition relation $T \subseteq Q \times Q$ such that $\forall q \in Q. \exists q' \in Q.(q, q') \in T$
 - A labeling (or interpretation) function $L :: Q \Rightarrow \mathcal{P}(Atoms)$
Syntax for LTL

LTL formulas:

```proof
datatype formula = Atom atom ("≪ _ ≫")
| Neg formula ("¬")
| And formula formula (infixr "∧" 80)
| Always formula ("□")
| Finally formula ("◊")
```

As abbreviation:

```proof
definition Imp :: "formula ⇒ formula ⇒ formula"
  (infixr "−→" 80)
where
  "a .−→ b = .¬ (a ∧ .¬b)"
```

© Arnd Poetzsch-Heffter et al.

TU Kaiserslautern
Definition (Kripke structure)

Let AP be a set of atomic propositions. A Kripke structure is a 4-tuple $M = (Q, I, T, L)$ consisting of

- a finite set of states Q
- a set of initial states $I \subseteq Q$
- a relation $T \subseteq Q \times Q$ such that $\forall q \in Q \ \exists q' \in Q$ with $(q, q') \in T$
- a labeling (or interpretation) function $L :: Q \Rightarrow P(Atoms)$
Kripke structure of elevator example

- Q as defined by type synonym “state” ($UNIV \text{ state}$)
- I: some suitable set of initial states
- T as defined by tr (why is there always a successor state?), and
- define $AP \equiv atom$ and L as follows:

\[
\text{datatype atom = Up | Op | At floor | To floor}
\]

\[
\text{fun L :: "state ⇒ atom set" where}
\]

\[
"L (_, g, dr, ds, fs) = \{ a . (dr=UP ∧ a=Up) ∨ (ds=OP ∧ a=Op) ∨ (a=At g) ∨ (∃ f∈fs.(a=To f)) \}"
\]
Remarks and example

Remarks:

- Since T is left-total, it is always possible to construct an infinite path through the Kripke structure. A deadlock state qd can be expressed by a single outgoing edge back to qd itself.
- The labeling function L defines for each state q in Q the set $L(s)$ of all atomic propositions that are valid in s.
- Kripke structures are used to define the semantics of LTL (see next slide)

Example of formalized property:

```plaintext
definition liveness :: "floor ⇒ formula" where
  "liveness f = □ (≪To f≫ .−→ ◊ (≪Op≫ .∧ ≪At f≫))"
```

© Arnd Poetzsch-Heffter et al. TU Kaiserslautern 328
Semantics for LTL

Let $M = (Q, I, T, L)$ be a Kripke structure and `trace` the type of traces defined by T:

```haskell
primrec valid_in_trace :: "trace ⇒ formula ⇒ bool" ("(_ ⊨ _)") [80, 80] 80) where
  "t ⊨ ≪a≫ = ( a ∈ L (head t) )"
| "t ⊨ ¬f = ( ¬ (t ⊨ f) )"
| "t ⊨ f.∧ g = ( (t ⊨ f) ∧ (t ⊨ g) )"
| "t ⊨ □ f = ( ∀ n. ((drp t n) ⊨ f ))"
| "t ⊨ ◯ f = ( ∃ n. ((drp t n) ⊨ f ))"

definition valid :: "formula ⇒ bool" ("(≡ _)" [80] 80) where
  "≡ f ≡ (∀ t ∈ traces. t ≌ f)"
```
Reasoning about finite transition systems

Three options for reasoning:

1. In Isabelle/HOL using the rules obtained from the definitions (semantics-based, formalized mathematical reasoning):
 » Elevator.thy (see exercises)
2. In LTL using rules for temporal reasoning (rules not shown here)
3. Model checking (works for finite state systems)