Chapter 7

Programming Language Semantics
Overview of Chapter

7. Programming Language Semantics

7.1 Introduction

7.2 Big-step semantics
 Basic concepts of big-step semantics
 Formalization of big-step semantics

7.3 Small-step semantics
 Small-step semantics of IMP
 Proving properties of the semantics
 Extensions of IMP

7.4 Denotational semantics
Section 7.1

Introduction
Motivation

Why studying language semantics?

- Understanding the details and construction of programming and modeling languages
- Foundation for language processing tools (compilers, optimizers, interpreters,...)
- Verifying type systems
- Development of new language abstractions and software concepts
- Reasoning about software
Material

Literature

- Glynn Winskel: The Formal Semantics of Programming Languages: An Introduction
- Benjamin C. Pierce et al.: Software Foundations (www.cis.upenn.edu/~bcpierce/sf/)

Acknowledgement

Thanks to Prof. Peter Müller for the slides.
General aspects

Degree of formalization:

- Informal semantics in language reports
- Formalization to support proof tools and as quality control

Goals here:

- Learn distinction between operational and denotational semantics
- Learn about the formalization of operational semantics
- Understand the relationship between programming language semantics and transition systems
Why Formal Semantics?

- Programming language design
 - Formal verification of language properties
 - Reveal ambiguities
 - Support for standardization
- Implementation of programming languages
 - Compilers
 - Interpreters
 - Portability
- Reasoning about programs
 - Formal verification of program properties
 - Extended static checking
Language Properties

- Type safety:
 In each execution state, a variable of type T holds a value of T or a subtype of T

- Very important question for language designers

- Example:
 If String is a subtype of Object, should String[] be a subtype of Object[]?
Language Properties

- **Type safety:**
 In each execution state, a variable of type T holds a value of T or a subtype of T

- Very important question for language designers

- **Example:**
 If String is a subtype of Object, should `String[]` be a subtype of `Object[]`?

```java
void m(Object[] oa) {
    oa[0]=new Integer(5);
}
String[] sa=new String[10];
m(sa);
String s = sa[0];
```
Language Definition

- State of a program execution
- Transformation of states

- Type rules
- Name resolution

- Syntax rules, defined by grammar
Compilation and Execution

1. Scanning, Parsing

2. Abstract Syntax Tree

3. Semantic Analysis, Type Checking

4. Annotated Abstract Syntax Tree

5. Execution
Three Kinds of Semantics

- **Operational semantics**
 - Describes execution on an **abstract machine**
 - Describes how the effect is achieved

- **Denotational semantics**
 - Programs are regarded as **functions** in a mathematical domain
 - Describes only the effect, not how it is obtained

- **Axiomatic semantics**
 - Specifies properties of the effect of executing a program are expressed
 - Some aspects of the computation may be ignored
Operational Semantics

y := 1;
while not (x=1) do (y := x*y; x := x-1)

► “First we assign 1 to y, then we test whether x is 1 or not. If it is then we stop and otherwise we update y to be the product of x and the previous value of y and then we decrement x by 1. Now we test whether the new value of x is 1 or not…”

► Two kinds of operational semantics
- Natural Semantics
- Structural Operational Semantics
Denotational Semantics

```plaintext
y := 1;
while not(x=1) do ( y := x*y; x := x-1 )
```

- “The program computes a partial function from states to states: the final state will be equal to the initial state except that the value of \(x \) will be 1 and the value of \(y \) will be equal to the factorial of the value of \(x \) in the initial state”

- Two kinds of denotational semantics
 - Direct Style Semantics
 - Continuation Style Semantics
Axiomatic Semantics

\[
y := 1;
\text{while not (} x = 1 \text{) do (} y := x \cdot y; \ x := x - 1 \text{)}
\]

- "If \(x = n \) holds before the program is executed then \(y = n! \) will hold when the execution terminates (if it terminates)"

- Two kinds of axiomatic semantics
 - Partial correctness
 - Total correctness
Abstraction

Concrete language implementation

Operational semantics

Denotational semantics

Axiomatic semantics

Abstract description
Selection Criteria

- Constructs of the programming language
 - Imperative
 - Functional
 - Concurrent
 - Object-oriented
 - Non-deterministic
 - Etc.

- Application of the semantics
 - Understanding the language
 - Program verification
 - Prototyping
 - Compiler construction
 - Program analysis
 - Etc.
The Language IMP

► Expressions
 - Boolean and arithmetic expressions
 - No side-effects in expressions

► Variables
 - All variables range over integers
 - All variables are initialized
 - No global variables

► IMP does not include
 - Heap allocation and pointers
 - Variable declarations
 - Procedures
 - Concurrency
Syntax of IMP: Characters and Tokens

Characters

| Letter | = 'A' . . . 'Z' | 'a' . . . 'z' |
| Digit | = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' |

Tokens

Ident	= Letter { Letter	Digit }
Integer	= Digit { Digit }	
Var	= Ident	
7. Programming Language Semantics

7.1 Introduction

Syntax of IMP: Expressions

Arithmetic expressions

\[
\begin{align*}
\text{Aexp} & = \text{Aexp Op Aexp} \mid \text{Var} \mid \text{Integer} \\
\text{Op} & = '+' \mid '-' \mid '*' \mid '/' \mid 'mod'
\end{align*}
\]

Boolean expressions

\[
\begin{align*}
\text{Bexp} & = \text{Bexp 'or' Bexp} \mid \text{Bexp 'and' Bexp} \\
& \quad \mid 'not' \ Bexp \mid \text{Aexp RelOp Aexp} \\
\text{RelOp} & = '=' \mid '#' \mid '<' \mid '<=' \mid '>' \mid '>='
\end{align*}
\]
Syntax of IMP: Statements

\[
\text{Stm} = \text{'skip'} \\
| \text{Var ' := ' Aexp} \\
| \text{Stm ' ; ' Stm} \\
| \text{'if' Bexp ' then ' Stm ' else ' Stm ' end'} \\
| \text{'while' Bexp ' do ' Stm ' end'}
\]
Notation

Meta-variables (written in *italic* font)

- x, y, z for variables (Var)
- e, e', e_1, e_2 for arithmetic expressions (Aexp)
- b, b_1, b_2 for boolean expressions (Bexp)
- s, s', s_1, s_2 for statements (Stm)

Keywords are written in *typewriter* font
Syntax of IMP: Example

res := 1;
while n > 1 do
 res := res * n;
 n := n - 1
end
Semantic Categories

Syntactic category: Integer Semantic category: Val = \(\mathbb{Z} \)

- 101 \(\rightarrow \) 5
- 101 \(\rightarrow \) 101

- Semantic functions map elements of syntactic categories to elements of semantic categories
- To define the semantics of IMP, we need semantic functions for
 - Arithmetic expressions (syntactic category Aexp)
 - Boolean expressions (syntactic category Bexp)
 - Statements (syntactic category Stm)
The meaning of an expression depends on the values bound to the variables that occur in it.

A state associates a value to each variable.

We represent a state σ as a finite function:

$$\sigma = \{ x_1 \mapsto v_1, x_2 \mapsto v_2, \ldots, x_n \mapsto v_n \}$$

where x_1, x_2, \ldots, x_n are different elements of Var and v_1, v_2, \ldots, v_n are elements of Val.
Semantics of Arithmetic Expressions

The semantic function

$$\mathcal{A} : \text{Aexp} \rightarrow \text{State} \rightarrow \text{Val}$$

maps an arithmetic expression e and a state σ to a value $\mathcal{A}[e]\sigma$

$$\begin{align*}
\mathcal{A}[x]\sigma &= \sigma(x) \\
\mathcal{A}[i]\sigma &= i \quad \text{for } i \in \mathbb{Z} \\
\mathcal{A}[e_1 \text{ op } e_2]\sigma &= \mathcal{A}[e_1]\sigma \text{ op } \mathcal{A}[e_2]\sigma \quad \text{for } \text{op} \in \text{Op}
\end{align*}$$

op is the operation $\text{Val} \times \text{Val} \rightarrow \text{Val}$ corresponding to op
Semantics of Boolean Expressions

The semantic function

\[\mathcal{B} : \text{Bexp} \rightarrow \text{State} \rightarrow \text{Bool} \]

maps a boolean expression \(b \) and a state \(\sigma \) to a truth value \(\mathcal{B} [b] \sigma \)

\[
\mathcal{B} [e_1 \ op \ e_2] \sigma = \begin{cases}
 tt & \text{if } \mathcal{A} [e_1] \sigma \ op \ \mathcal{A} [e_2] \sigma \\
 ff & \text{otherwise}
\end{cases}
\]

\(op \in \text{RelOp} \) and \(\overline{op} \) is the relation \(\text{Val} \times \text{Val} \) corresponding to \(op \)
Boolean Expressions (cont’d)

\[
\begin{align*}
\mathcal{B}[b_1 \text{ or } b_2] \sigma &= \begin{cases}
tt & \text{if } \mathcal{B}[b_1] \sigma = tt \text{ or } \mathcal{B}[b_2] \sigma = tt \\
ff & \text{otherwise}
\end{cases} \\
\mathcal{B}[b_1 \text{ and } b_2] \sigma &= \begin{cases}
\tt & \text{if } \mathcal{B}[b_1] \sigma = tt \text{ and } \mathcal{B}[b_2] \sigma = tt \\
\ff & \text{otherwise}
\end{cases} \\
\mathcal{B}[\text{not } b] \sigma &= \begin{cases}
\tt & \text{if } \mathcal{B}[b] \sigma = ff \\
\ff & \text{otherwise}
\end{cases}
\end{align*}
\]
Operational Semantics of Statements

- Evaluation of an expression in a state yields a value

\[
x + 2 \times y
\]

\[A : \text{Aexp} \rightarrow \text{State} \rightarrow \text{Val}\]

- Execution of a statement modifies the state

\[
x := 2 \times y
\]

- Operational semantics describe \textbf{how} the state is modified during the execution of a statement
Big-Step and Small-Step Semantics

- Big-step semantics describe how the overall results of the executions are obtained
 - Natural semantics

- Small-step semantics describe how the individual steps of the computations take place
 - Structural operational semantics
 - Abstract state machines
Transition Systems

A transition system is a tuple \((\Gamma, T, \rhd)\)
- \(\Gamma\): a set of configurations
- \(T\): a set of terminal configurations, \(T \subseteq \Gamma\)
- \(\rhd\): a transition relation, \(\rhd \subseteq \Gamma \times \Gamma\)

Example: Finite automaton

\[
\begin{align*}
\Gamma &= \{\langle w, S \rangle \mid w \in \{a, b, c\}^*, S \in \{1, 2, 3, 4\}\} \\
T &= \{\langle \epsilon, S \rangle \mid S \in \{1, 2, 3, 4\}\} \\
\rhd &= \{(\langle aw, 1 \rangle \rightarrow \langle w, 2 \rangle), (\langle aw, 1 \rangle \rightarrow \langle w, 3 \rangle), \\
&\quad (\langle bw, 2 \rangle \rightarrow \langle w, 4 \rangle), (\langle cw, 3 \rangle \rightarrow \langle w, 4 \rangle)\}
\end{align*}
\]
Section 7.2

Big-step semantics
Big-step semantics

Introductory remarks:

• Big-step semantics relates *prestates* of statement executions to *poststates*

• Often called *natural semantics*, because it abstracts from intermediate states

Overview:

• Basic concepts of big-step semantics

• Formalization of big-step semantics in Isabelle/HOL
Basic concepts of big-step semantics
Transitions in Natural Semantics

- Two types of configurations for operational semantics
 1. \(\langle s, \sigma \rangle \), which represents that the statement \(s \) is to be executed in state \(\sigma \)
 2. \(\sigma \), which represents a terminal state
- The transition relation \(\rightarrow \) describes how executions take place
 - Typical transition: \(\langle s, \sigma \rangle \rightarrow \sigma' \)
 - Example: \(\langle \text{skip}, \sigma \rangle \rightarrow \sigma \)

\[
\begin{align*}
\Gamma & = \{ \langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State} \} \cup \text{State} \\
T & = \text{State} \\
\rightarrow & \subseteq \{ \langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State} \} \times \text{State}
\end{align*}
\]
7. Programming Language Semantics 7.2 Big-step semantics

Rules

- Transition relation is specified by rules
 \[
 \varphi_1, \ldots, \varphi_n \quad \text{if Condition} \quad \varphi
 \]

 where $\varphi_1, \ldots, \varphi_n$ and ψ are transitions

- Meaning of the rule

 If Condition and $\varphi_1, \ldots, \varphi_n$ then ψ

- Terminology

 - $\varphi_1, \ldots, \varphi_n$ are called premises
 - ψ is called conclusion
 - A rule without premises is called axiom
Notation

- Updating States: \(\sigma[y \leftarrow v] \) is the function that
 - overrides the association of \(y \) in \(\sigma \) by \(y \mapsto v \) or
 - adds the new association \(y \mapsto v \) to \(\sigma \)

\[
(\sigma[y \leftarrow v])(x) = \begin{cases}
v & \text{if } x = y \\
\sigma(x) & \text{if } x \neq y
\end{cases}
\]
Natural Semantics of IMP

- **skip** does not modify the state

\[
\langle \text{skip}, \sigma \rangle \rightarrow \sigma
\]

- **\(x := e\)** assigns the value of \(e\) to variable \(x\)

\[
\langle x := e, \sigma \rangle \rightarrow \sigma[x \leftarrow A[e] \sigma]
\]

- **Sequential composition** \(s_1; s_2\)
 - First, \(s_1\) is executed in state \(\sigma\), leading to \(\sigma'\)
 - Then \(s_2\) is executed in state \(\sigma'\)

\[
\langle s_1, \sigma \rangle \rightarrow \sigma', \langle s_2, \sigma' \rangle \rightarrow \sigma''
\]

\[
\langle s_1; s_2, \sigma \rangle \rightarrow \sigma''
\]
Natural Semantics of IMP (cont’d)

- Conditional statement `if b then s₁ else s₂ end`
 - If `b` holds, `s₁` is executed
 - If `b` does not hold, `s₂` is executed

\[
\begin{align*}
\langle s_1, \sigma \rangle &\rightarrow \sigma' \\
\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle &\rightarrow \sigma' \quad \text{if } B[b]_\sigma = tt
\end{align*}
\]
Natural Semantics of IMP (cont’d)

- Loop statement while \(b \) do \(s \) end
 - If \(b \) holds, \(s \) is executed once, leading to state \(\sigma' \)
 - Then the whole while-statement is executed again \(\sigma' \)

\[
\begin{align*}
\langle s, \sigma \rangle & \rightarrow \sigma', \langle \text{while } b \text{ do } s \text{ end}, \sigma' \rangle \rightarrow \sigma'' \\
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle & \rightarrow \sigma'' \quad \text{if } B[b] \sigma = \text{tt}
\end{align*}
\]

- If \(b \) does not hold, the while-statement does not modify the state

\[
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \rightarrow \sigma \quad \text{if } B[b] \sigma = \text{ff}
\]
Rule Instantiations

- Rules are actually **rule schemes**
 - Meta-variables stand for arbitrary variables, expressions, statements, states, etc.
 - To apply rules, they have to be **instantiated** by selecting particular variables, expressions, statements, states, etc.

- Assignment rule **scheme**
 \[
 \langle x := e, \sigma \rangle \rightarrow \sigma [x \mapsto A[e] \sigma]
 \]

- Assignment rule **instance**
 \[
 \langle v := v + 1, \{v \mapsto 3\} \rangle \rightarrow \{v \mapsto 4\}
 \]
Derivations: Example

What is the final state if statement
\[z := x; \ x := y; \ y := z \]
is executed in state \(\{ x \mapsto 5, y \mapsto 7, z \mapsto 0 \} \)
(abbreviated by \([5, 7, 0]\))?

\[
\begin{align*}
\langle z := x, [5, 7, 0] \rangle & \rightarrow [5, 7, 5], \\
\langle x := y, [5, 7, 5] \rangle & \rightarrow [7, 7, 5], \\
\langle y := z, [7, 7, 5] \rangle & \rightarrow [7, 5, 5].
\end{align*}
\]
Derivation Trees

- Rule instances can be combined to derive a transition \(\langle s, \sigma \rangle \rightarrow \sigma' \)
- The result is a **derivation tree**
 - The root is the transition \(\langle s, \sigma \rangle \rightarrow \sigma' \)
 - The leaves are axiom instances
 - The internal nodes are conclusions of rule instances and have the corresponding premises as immediate children
- The conditions of all instantiated rules must be satisfied
- There can be several derivations for one transition (non-deterministic semantics)
Termination

- The execution of a statement s in state σ
 - terminates iff there is a state σ' such that $\langle s, \sigma \rangle \rightarrow \sigma'$
 - loops iff there is no state σ' such that $\langle s, \sigma \rangle \rightarrow \sigma'$

- A statement s
 - always terminates if the execution in a state σ terminates for all choices of σ
 - always loops if the execution in a state σ loops for all choices of σ
Semantic Equivalence

Definition
Two statements s_1 and s_2 are semantically equivalent (denoted by $s_1 \equiv s_2$) if the following property holds for all states σ, σ':

$$\langle s_1, \sigma \rangle \rightarrow \sigma' \iff \langle s_2, \sigma \rangle \rightarrow \sigma'$$

Example

```
while b do s end \equiv
if b then s; while b do s end
```
Subsection 7.2.2

Formalization of big-step semantics
Big-step semantics in Isabelle/HOL

Approach

- Formalize the abstract syntax of the language by a recursive datatype
- Formalize the big-step semantics as an inductive predicate
Arithmetic expressions

```plaintext
datatype var = V nat (".v_" 90)

datatype aexp = Plus aexp aexp (infixr ".+." 30)
| Minus aexp aexp (infixr ".-." 30)
| Mult aexp aexp (infixr ".*." 50)
| Div aexp aexp (infixr "./." 50)
| Mod aexp aexp (infixr ".%." 50)
| Var var ("'_" 90)
| Const int ("'_" 90)
```
7. Programming Language Semantics

7.2 Big-step semantics

Boolean expressions

datatype bexp = Or bexp bexp (infixr ".|." 20)
 | And bexp bexp (infixr ".&." 20)
 | Not bexp ("!_" 80)
 | Eq aexp aexp (infixr ".=." 10)
 | Less aexp aexp (infixr ".<." 10)
 | Leq aexp aexp (infixr "<=." 10)
commands/statements

datatype com =
 Skip ("SKIP")
 | Assign var aexp ("_:=+_" [60, 60] 20)
 | Semi com com ("_;_" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _ END" 60)
 | While bexp com ("WHILE _ DO _ END" 60)
type_synonym state = "var ⇒ int"

primrec aeval :: "aexp ⇒ state ⇒ int" where
 "aeval (Plus la ra) s = ((aeval la s) + (aeval ra s))"
| "aeval (Minus la ra) s = ((aeval la s) - (aeval ra s))"
| "aeval (Mult la ra) s = ((aeval la s) * (aeval ra s))"
| "aeval (Div la ra) s = ((aeval la s) div (aeval ra s))"
| "aeval (Mod la ra) s = ((aeval la s) mod (aeval ra s))"
| "aeval (Var v) s = (s v)"
| "aeval (Const i) s = i"
Evaluation of boolean expressions

primrec beval :: "bexp ⇒ state ⇒ bool" where
 "beval (Or lb rb) s = ((beval lb s) ∨ (beval rb s))"
| "beval (And lb rb) s = ((beval lb s) ∧ (beval rb s))"
| "beval (Not be) s = (¬ (beval be s))"
| "beval (Eq la ra) s = ((aeval la s) = (aeval ra s))"
| "beval (Less la ra) s = ((aeval la s) < (aeval ra s))"
| "beval (Leq la ra) s = ((aeval la s) ≤ (aeval ra s))"
Operational semantics

inductive exec :: "state ⇒ com ⇒ state ⇒ bool"
 ("_/ -_/ →_/ _" [50,0,50] 50) where
 Skip: "s -SKIP→ s"
 | Assign: "s -(v:= ae)→ s(v:= aeval ae s)"
 | Semi: "[s0 -c1→ s1; s1 -c2→ s2]
 \[⇒ s0 -c1;c2→ s2]"
 | IfT: "[beval b s ; s -c1→ t]
 \[⇒ s -IF b THEN c1 ELSE c2 END→ t]"
 | IfF: "[¬(beval b s); s -c2→ t]
 \[⇒ s -IF b THEN c1 ELSE c2 END→ t]"
 | WhileF: "¬(beval b s) \[⇒ s -WHILE b DO c END→ s]"
 | WhileT: "[beval b s; s-c→t; t -WHILE b DO c END→ u]
 \[⇒ s -WHILE b DO c END→ u]"
Some properties

lemma [iff]:

\[(s \downarrow c; d \rightarrow u) = (\exists t. s \downarrow c \rightarrow t \land t \downarrow d \rightarrow u)\]

lemma [iff]:

\[(s \downarrow \text{IF be THEN c ELSE d END } \rightarrow t) = \\
(s \downarrow \text{if beval be s then c else d } \rightarrow t)\]

lemma unfold_while:

\[(s \downarrow \text{WHILE b DO c END } \rightarrow u) = \\
(s \downarrow \text{IF b THEN c; WHILE b DO c END ELSE SKIP END } \rightarrow u)\]

lemma while_rule:

\[\left[\begin{array}{c}
(s \downarrow \text{WHILE b DO c END } \rightarrow t; \ P s; \\
\forall s s'. P s \land (\text{beval b s}) \land s \downarrow c \rightarrow s' \rightarrow P s'
\end{array}\right]\]

\[\implies P t \land \neg (\text{beval b t})\]
Formalization of semantics and verification

Remarks

- Inductive definition of the “semantics judgement” leads to a semantic predicate satisfying the least fixpoint of the semantical rules
- The operational semantics can be directly used for program verification (Why do we need a programming logic? (cf. Chapter 8))
Section 7.3

Small-step semantics
Overview

7.3.1 Small-step semantics of IMP
7.3.2 Proving properties of the semantics
7.3.3 Extensions of IMP
Subsection 7.3.1

Small-step semantics of IMP
Structural Operational Semantics

- The emphasis is on the *individual steps* of the execution
 - Execution of assignments
 - Execution of tests

- Describing small steps of the execution allows one to express the *order of execution* of individual steps
 - Interleaving computations
 - Evaluation order for expressions (not shown in the course)

- Describing always the *next small step* allows one to express *properties of looping programs*
Transitions in SOS

- The configurations are the same as for natural semantics.
- The transition relation \rightarrow_1 can have two forms.
- $\langle s, \sigma \rangle \rightarrow_1 \langle s', \sigma' \rangle$: the execution of s from σ is not completed and the remaining computation is expressed by the intermediate configuration $\langle s', \sigma' \rangle$.
- $\langle s, \sigma \rangle \rightarrow_1 \sigma'$: the execution of s from σ has terminated and the final state is σ'.
- A transition $\langle s, \sigma \rangle \rightarrow_1 \gamma$ describes the first step of the execution of s from σ.

© Peter Müller 390

Peter Müller—Semantics of Programming Languages, SS04 – p.101
Transition System

\[\Gamma = \{ \langle s, \sigma \rangle \mid s \in Stm, \sigma \in State \} \cup State\]
\[T = State\]
\[\rightarrow_1 \subseteq \{ \langle s, \sigma \rangle \mid s \in Stm, \sigma \in State \} \times \Gamma\]

- We say that \(\langle s, \sigma \rangle\) is **stuck** if there is no \(\gamma\) such that \(\langle s, \sigma \rangle \rightarrow_1 \gamma\)
SOS of IMP

- **skip** does not modify the state
 \[\langle \text{skip}, \sigma \rangle \rightarrow_1 \sigma \]

- **\(x := e \)** assigns the value of \(e \) to variable \(x \)
 \[\langle x := e, \sigma \rangle \rightarrow_1 \sigma[x \mapsto \mathcal{A}[e] \sigma] \]

- **skip** and assignment require only one step

- Rules are analogous to natural semantics
 \[\langle \text{skip}, \sigma \rangle \rightarrow \sigma \]
 \[\langle x := e, \sigma \rangle \rightarrow \sigma[x \mapsto \mathcal{A}[e] \sigma] \]
SOS of IMP: Sequential Composition

- Sequential composition \(s_1; s_2 \)
- First step of executing \(s_1; s_2 \) is the first step of executing \(s_1 \)
- \(s_1 \) is executed in one step

\[
\begin{align*}
\langle s_1, \sigma \rangle & \rightarrow_1 \sigma' \\
\langle s_1; s_2, \sigma \rangle & \rightarrow_1 \langle s_2, \sigma' \rangle
\end{align*}
\]

- \(s_1 \) is executed in several steps

\[
\begin{align*}
\langle s_1, \sigma \rangle & \rightarrow_1 \langle s'_1, \sigma' \rangle \\
\langle s_1; s_2, \sigma \rangle & \rightarrow_1 \langle s'_1; s_2, \sigma' \rangle
\end{align*}
\]
The first step of executing `if b then s₁ else s₂ end` is to determine the outcome of the test and thereby which branch to select.

- \(\langle \text{if } b \text{ then } s₁ \text{ else } s₂ \text{ end}, \sigma \rangle \rightarrow₁ \langle s₁, \sigma \rangle \) if \(B[b]σ = tt \)
- \(\langle \text{if } b \text{ then } s₁ \text{ else } s₂ \text{ end}, \sigma \rangle \rightarrow₁ \langle s₂, \sigma \rangle \) if \(B[b]σ = ff \)
Alternative for Conditional Statement

The first step of executing \(\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end} \) is the first step of the branch determined by the outcome of the test.

\[
\langle s_1, \sigma \rangle \rightarrow_1 \sigma' \\
\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \rightarrow_1 \sigma'
\]
if \(B[b] \sigma = tt \)

\[
\langle s_1, \sigma \rangle \rightarrow_1 \langle s'_1, \sigma' \rangle \\
\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \rightarrow_1 \langle s'_1, \sigma' \rangle
\]
if \(B[b] \sigma = tt \)

and two similar rules for \(B[b] \sigma = ff \)

- Alternatives are equivalent for IMP
- Choice is important for languages with parallel execution
SOS of IMP: Loop Statement

The first step is to unrole the loop

\[\langle \texttt{while } b \texttt{ do } s \texttt{ end}, \sigma \rangle \rightarrow_1 \langle \texttt{if } b \texttt{ then } s; \texttt{while } b \texttt{ do } s \texttt{ end else skip end}, \sigma \rangle \]

Recall that \texttt{while } b \texttt{ do } s \texttt{ end} and \texttt{if } b \texttt{ then } s; \texttt{while } b \texttt{ do } s \texttt{ end else skip end} are semantically equivalent in the natural semantics.
Alternatives for Loop Statement

The first step is to decide the outcome of the test and thereby whether to unrole the body of the loop or to terminate

\[
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \rightarrow_1 \langle s; \text{while } b \text{ do } s \text{ end}, \sigma \rangle \\
\text{if } B[b] \sigma = \text{tt}
\]

\[
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \rightarrow_1 \sigma \quad \text{if } B[b] \sigma = \text{ff}
\]

Or combine with the alternative semantics of the conditional statement

Alternatives are equivalent for IMP
Derivation Sequences

- A **derivation sequence** of a statement \(s \) starting in state \(\sigma \) is a sequence \(\gamma_0, \gamma_1, \gamma_2, \ldots \), where
 - \(\gamma_0 = \langle s, \sigma \rangle \)
 - \(\gamma_i \rightarrow_1 \gamma_{i+1} \) for \(0 \leq i \)

- A derivation sequence is either **finite** or **infinite**
 - Finite derivation sequences end with a configuration that is either a terminal configuration or a stuck configuration

- **Notation**
 - \(\gamma_0 \rightarrow_1^i \gamma_i \) indicates that there are \(i \) steps in the execution from \(\gamma_0 \) to \(\gamma_i \)
 - \(\gamma_0 \rightarrow_1^* \gamma_i \) indicates that there is a **finite number of steps** in the execution from \(\gamma_0 \) to \(\gamma_i \)
 - \(\gamma_0 \rightarrow_1^i \gamma_i \) and \(\gamma_0 \rightarrow_1^* \gamma_i \) need **not** be derivation sequences
Derivation Sequences: Example

What is the final state if the statement

\[
\begin{align*}
z &:= x; \\
x &:= y; \\
y &:= z
\end{align*}
\]

is executed in state \(\{x \mapsto 5, y \mapsto 7, z \mapsto 0\} \)?

\[
\begin{align*}
\langle z := x; \ x := y; \ y := z, \{x \mapsto 5, y \mapsto 7, z \mapsto 0\} \rangle \\
\rightarrow_1 \langle x := y; \ y := z, \{x \mapsto 5, y \mapsto 7, z \mapsto 5\} \rangle \\
\rightarrow_1 \langle y := z, \{x \mapsto 7, y \mapsto 7, z \mapsto 5\} \rangle \\
\rightarrow_1 \{x \mapsto 7, y \mapsto 5, z \mapsto 5\}
\end{align*}
\]
Derivation Trees

- Derivation trees explain why transitions take place
- For the first step

\[\langle z := x; x := y; y := z, \sigma \rangle \rightarrow_1 \langle x := y; y := z, \sigma[z \mapsto 5] \rangle \]

the derivation tree is

\[
\begin{array}{c}
\langle z := x, \sigma \rangle \rightarrow_1 \sigma[z \mapsto 5] \\
\langle z := x; x := y, \sigma \rangle \rightarrow_1 \langle x := y, \sigma[z \mapsto 5] \rangle \\
\langle z := x; x := y; y := z, \sigma \rangle \rightarrow_1 \langle x := y; y := z, \sigma[z \mapsto 5] \rangle
\end{array}
\]

- \(z := x; (x := y; y := z) \) would lead to a simpler tree with only one rule application
Derivation Sequences and Trees

► Natural (big-step) semantics
 - The execution of a statement (sequence) is described by one big transition
 - The big transition can be seen as trivial derivation sequence with exactly one transition
 - The derivation tree explains why this transition takes place

► Structural operational (small-step) semantics
 - The execution of a statement (sequence) is described by one or more transitions
 - Derivation sequences are important
 - Derivation trees justify each individual step in a derivation sequence
Termination

- The execution of a statement s in state σ
 - terminates iff there is a finite derivation sequence starting with $\langle s, \sigma \rangle$
 - loops iff there is an infinite derivation sequence starting with $\langle s, \sigma \rangle$

- The execution of a statement s in state σ
 - terminates successfully if $\langle s, \sigma \rangle \xrightarrow{\ast} \sigma'$
 - In IMP, an execution terminates successfully iff it terminates (no stuck configurations)
Subsection 7.3.2

Proving properties of the semantics
Induction on Derivations

Induction on the length of derivation sequences

1. **Induction base**: Prove that the property holds for all derivation sequences of length 0

2. **Induction step**: Prove that the property holds for all other derivation sequences:
 - **Induction hypothesis**: Assume that the property holds for all derivation sequences of length at most k
 - Prove that it also holds for derivation sequences of length $k + 1$

Induction on the length of derivation sequences is an application of strong mathematical induction.
Using Induction on Derivations

- The induction step is often done by inspecting either
 - the structure of the syntactic element or
 - the derivation tree validating the first transition of the derivation sequence

Lemma

\[\langle s_1; s_2, \sigma \rangle \rightarrow^k_1 \sigma'' \Rightarrow \exists \sigma', k_1, k_2 : \langle s_1, \sigma \rangle \rightarrow^k_1 \sigma' \land \langle s_2, \sigma' \rangle \rightarrow^k_2 \sigma'' \land k_1 + k_2 = k \]
Proof

- Proof by induction on k, that is, by induction on the length of the derivation sequence for $\langle s_1; s_2, \sigma \rangle \rightarrow^{k}_{1} \sigma''$

- Induction base: $k = 0$: There is no derivation sequence of length 0 for $\langle s_1; s_2, \sigma \rangle \rightarrow^{k}_{1} \sigma''$

- Induction step
 - We assume that the lemma holds for $k \leq m$
 - We prove that the lemma holds for $m + 1$
 - The derivation sequence $\langle s_1; s_2, \sigma \rangle \rightarrow^{m+1}_{1} \sigma''$ can be written as $\langle s_1; s_2, \sigma \rangle \rightarrow_{1} \gamma \rightarrow^{m}_{1} \sigma''$ for some configuration γ
Induction Step

- \(\langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma \rightarrow^m_1 \sigma'' \)
- Consider the two rules that could lead to the transition \(\langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma \)

 Case 1

 \[
 \frac{\langle s_1, \sigma \rangle \rightarrow_1 \sigma'}{\langle s_1; s_2, \sigma \rangle \rightarrow_1 \langle s_2, \sigma' \rangle}
 \]

 Case 2

 \[
 \frac{\langle s_1, \sigma \rangle \rightarrow_1 \langle s_1', \sigma' \rangle}{\langle s_1; s_2, \sigma \rangle \rightarrow_1 \langle s_1'; s_2, \sigma' \rangle}
 \]
Induction Step: Case 1

From
\[\langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma \rightarrow^m_1 \sigma'' \quad \text{and} \quad \langle s_1; s_2, \sigma \rangle \rightarrow_1 \langle s_2, \sigma' \rangle \]

we conclude
\[\langle s_2, \sigma' \rangle \rightarrow^m_1 \sigma'' \]

The required result follows by choosing \(k_1 = 1 \) and \(k_2 = m \).
Induction Step: Case 2

- From
 \[\langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma \rightarrow_1^m \sigma'' \quad \text{and} \quad \langle s_1; s_2, \sigma \rangle \rightarrow_1 \langle s'_1; s_2, \sigma' \rangle \]
 we conclude \(\langle s'_1; s_2, \sigma' \rangle \rightarrow_1^m \sigma'' \)

- By applying the induction hypothesis, we get
 \[\exists \sigma_0, l_1, l_2 : \langle s'_1, \sigma' \rangle \rightarrow_1^{l_1} \sigma_0 \land \langle s_2, \sigma_0 \rangle \rightarrow_1^{l_2} \sigma'' \land l_1 + l_2 = m \]

- From
 \[\langle s_1, \sigma \rangle \rightarrow_1 \langle s'_1, \sigma' \rangle \quad \text{and} \quad \langle s'_1, \sigma' \rangle \rightarrow_1^{l_1} \sigma_0 \]
 we get \(\langle s_1, \sigma \rangle \rightarrow_1^{l_1+1} \sigma_0 \)

- By
 \[\langle s_2, \sigma_0 \rangle \rightarrow_1^{l_2} \sigma'' \quad \text{and} \quad (l_1 + 1) + l_2 = m + 1 \]
 we have proved the required result
Semantic Equivalence

Two statements s_1 and s_2 are semantically equivalent if for all states σ:

1. $\langle s_1, \sigma \rangle \xrightarrow{1}^* \gamma$ iff $\langle s_2, \sigma \rangle \xrightarrow{1}^* \gamma$, whenever γ is a configuration that is either stuck or terminal, and

2. there is an infinite derivation sequence starting in $\langle s_1, \sigma \rangle$ iff there is one starting in $\langle s_2, \sigma \rangle$

Note: In the first case, the length of the two derivation sequences may be different.
Determinism

Lemma: The structural operational semantics of IMP is deterministic. That is, for all \(s, \sigma, \gamma, \) and \(\gamma' \) we have that

\[
\langle s, \sigma \rangle \rightarrow_1 \gamma \land \langle s, \sigma \rangle \rightarrow_1 \gamma' \Rightarrow \gamma = \gamma'
\]

- The proof runs by induction on the shape of the derivation tree for the transition \(\langle s, \sigma \rangle \rightarrow_1 \gamma \)

Corollary: There is exactly one derivation sequence starting in configuration \(\langle s, \sigma \rangle \)

- The proof runs by induction on the length of the derivation sequence
Subsection 7.3.3

Extensions of IMP
Extensions of IMP

- Local variable declarations
- Statement “abort”
- Non-determinism
- Parallelism
Local Variable Declarations

- Local variable declaration \(\text{var } x := e \text{ in } s \text{ end} \)
- The small steps are
 1. Assign \(e \) to \(x \)
 2. Execute \(s \)
 3. Restore the initial value of \(x \)
 (necessary if \(x \) exists in the enclosing scope)
- Problem: There is no history of states that could be used to restore the value of \(x \)
- Idea: Represent states as execution stacks
Modelling Execution Stacks

- We model execution stacks by providing a mapping \(\text{Var} \rightarrow \text{Val} \) for each scope.

\[
\text{State} : \text{stack of}(\text{Var} \rightarrow \text{Val})
\]

- Assignment and lookup have to determine the highest stack element in which a variable is defined.

- Example: \(\sigma(x) = 3 \)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(1)</td>
</tr>
<tr>
<td>(y)</td>
<td>(2)</td>
</tr>
<tr>
<td>(z)</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Example: \(\sigma(x) = 3 \)
SOS for Variable Declarations

- The small steps are
 1. Create new scope and assign e to x in this scope
 2. Execute s
 3. Restore the initial value of x using a return statement

\[
\langle \text{var } x := e \text{ in } s \text{ end}, \sigma \rangle \rightarrow_1 \\
\langle s; \text{return}, \text{push}(\{x \mapsto A[e]_\sigma\}, \sigma) \rangle \\
\langle \text{return}, \sigma \rangle \rightarrow_1 \text{pop}(\sigma)
\]

- Similar techniques can be used for procedure calls
Abortion

- Statement `abort` stops the execution of the complete program
- Abortion is modeled by ensuring that the configurations `⟨abort, σ⟩` are stuck
- There is no additional rule for `abort` in the structural operational semantics
- `abort` and `skip` are not semantically equivalent
 - `⟨abort, σ⟩` is the only derivation sequence for `abort` starting is `s`
 - `⟨skip, σ⟩ →_1 σ` is the only derivation sequence for `skip` starting is `s`
Abortion: Observations

- `abort` and `while true do skip end` are not semantically equivalent:

 \[
 \langle \text{while true do skip end}, \sigma \rangle \rightarrow_1 \\
 \langle \text{if true then skip;while true do skip end end}, \sigma \rangle \rightarrow_1 \\
 \langle \text{skip;while true do skip end} \rangle \rightarrow_1 \\
 \langle \text{while true do skip end}, \sigma \rangle
 \]

- In a structural operational semantics,
 - looping is reflected by infinite derivation sequences
 - abnormal termination by finite derivation sequences ending in a stuck configuration
Non-determinism

- For the statement $s_1 \parallel s_2$ either s_1 or s_2 is non-deterministically chosen to be executed

- The statement


  ```
  x:=1; x:=2; x:=x+2
  ```

 could result in a state in which x has the value 1 or 4

- Rules

  ```
  \langle s_1 \parallel s_2, \sigma \rangle \rightarrow_1 \langle s_1, \sigma \rangle \quad \langle s_1 \parallel s_2, \sigma \rangle \rightarrow_1 \langle s_2, \sigma \rangle
  ```
Non-determinism: Observations

- There are two derivation sequences
 - \(\{x := 1\} x := 2; \ x := x + 2, \sigma \} \rightarrow^*_1 \sigma[x \mapsto 1] \)
 - \(\{x := 1\} x := 2; \ x := x + 2, \sigma \} \rightarrow^*_1 \sigma[x \mapsto 4] \)

- There are also two derivation sequences for
 \(\langle \text{while true do skip end} \} x := 2; \ x := x + 2, \sigma \} \)
 - an finite derivation sequence leading to \(\sigma[x \mapsto 4] \)
 - an infinite derivation sequence

- A structural operational semantics can choose the "wrong" branch of a non-deterministic choice

- In a structural operational semantics non-determinism does not suppress looping
Parallelism

For the statement $s_1 \text{ par } s_2$ both statements s_1 and s_2 are executed, but execution can be interleaved.

\[
\begin{aligned}
\langle s_1, \sigma \rangle &\rightarrow_1 \langle s'_1, \sigma' \rangle \\
\langle s_1 \text{ par } s_2, \sigma \rangle &\rightarrow_1 \langle s'_1 \text{ par } s_2, \sigma' \rangle \\
\langle s_1, \sigma \rangle &\rightarrow_1 \sigma' \\
\langle s_1 \text{ par } s_2, \sigma \rangle &\rightarrow_1 \langle s_2, \sigma' \rangle \\
\langle s_2, \sigma \rangle &\rightarrow_1 \langle s'_2, \sigma' \rangle \\
\langle s_1 \text{ par } s_2, \sigma \rangle &\rightarrow_1 \langle s_1 \text{ par } s'_2, \sigma' \rangle \\
\langle s_2, \sigma \rangle &\rightarrow_1 \sigma' \\
\langle s_1 \text{ par } s_2, \sigma \rangle &\rightarrow_1 \langle s_1, \sigma' \rangle
\end{aligned}
\]
Example: Interleaving

The statement

\[x := 1 \text{ par } x := 2 ; \ x := x + 2 \]

could result in a state in which \(x \) has the value 4, 1, or 3

- Execute \(x := 1 \), then \(x := 2 \), and then \(x := x + 2 \)
- Execute \(x := 2 \), then \(x := x + 2 \), and then \(x := 1 \)
- Execute \(x := 2 \), then \(x := 1 \), and then \(x := x + 2 \)

In a structural operational semantics we can easily express interleaving of computations.
Example: Derivation Sequences

\[
\begin{align*}
 \langle x := 1 \operatorname{par} x := 2; \ x := x + 2, \sigma \rangle & \rightarrow_1 \langle x := 2; \ x := x + 2, \sigma[x \mapsto 1] \rangle \\
 & \rightarrow_1 \langle x := x + 2, \sigma[x \mapsto 2] \rangle \\
 & \rightarrow_1 \sigma[x \mapsto 4] \\
 \langle x := 1 \operatorname{par} x := 2; \ x := x + 2, \sigma \rangle & \rightarrow_1 \langle x := 1 \operatorname{par} x := x + 2, \sigma[x \mapsto 2] \rangle \\
 & \rightarrow_1 \langle x := 1, \sigma[x \mapsto 4] \rangle \\
 & \rightarrow_1 \sigma[x \mapsto 1] \\
 \langle x := 1 \operatorname{par} x := 2; \ x := x + 2, \sigma \rangle & \rightarrow_1 \langle x := 1 \operatorname{par} x := x + 2, \sigma[x \mapsto 2] \rangle \\
 & \rightarrow_1 \langle x := x + 2, \sigma[x \mapsto 1] \rangle \\
 & \rightarrow_1 \sigma[x \mapsto 3]
\end{align*}
\]
Comparison: Summary

Natural Semantics
- Local variable declarations and procedures can be modeled easily
- No distinction between abortion and looping
- Non-determinism suppresses looping (if possible)
- Parallelism cannot be modeled

Structural Operational Semantics
- Local variable declarations and procedures require modeling the execution stack
- Distinction between abortion and looping
- Non-determinism does not suppress looping
- Parallelism can be modeled
Section 7.4

Denotational semantics
Motivation

Goals of a semantics definition

- Semantics defines *observational* behavior
- Semantics defines an equivalence relation on programs: When are two programs considered to be equal?
- Semantics should also provide semantics of program parts: E.g., When can a Java class be used for another class?
- Semantics should be defined compositional

Observations

Operational semantics:

- often not sufficiently abstract and non-compositional
- often unclear how to handle program parts
7. Programming Language Semantics

7.4 Denotational semantics

package cells;

public interface Val {}

public class Cell {
 private Val vatt;
 public void set(Val v) {
 vatt = v;
 }
 public Val get() {
 return vatt;
 }
}

package cells;

public interface Val {}

public class Cell {
 private Val v1, v2;
 private boolean f;
 public void set(Val v) {
 f = !f;
 if (f) v1 = v;
 else v2 = v;
 }
 public Val get() {
 return f ? v1 : v2;
 }
 public Val getPrevious() {
 return f ? v2 : v1;
 }
}
Approach

- Denotational semantics describes the **effect** of a computation

- A semantic function is defined for each syntactic construct
 - maps syntactic construct to a mathematical object, often a function
 - the mathematical object describes the effect of executing the syntactic construct
Compositionality

- In denotational semantics, semantic functions are defined *compositionally*
- There is a semantic clause for each of the basis elements of the syntactic category
- For each method of constructing a composite element (in the syntactic category) there is a semantic clause defined in terms of the semantic function applied to the immediate constituents of the composite element
Examples

- The semantic functions $\mathcal{A} : \text{Aexp} \rightarrow \text{State} \rightarrow \text{Val}$ and $\mathcal{B} : \text{Bexp} \rightarrow \text{State} \rightarrow \text{Bool}$ are denotational definitions.

\[
\begin{align*}
\mathcal{A}[x] \sigma & = \sigma(x) \\
\mathcal{A}[i] \sigma & = i \\
\mathcal{A}[e_1 \text{ op } e_2] \sigma & = \mathcal{A}[e_1] \sigma \text{ op } \mathcal{A}[e_2] \sigma \\
\mathcal{B}[e_1 \text{ op } e_2] \sigma & = \begin{cases}
\text{tt} & \text{if } \mathcal{A}[e_1] \sigma \text{ op } \mathcal{A}[e_2] \sigma \\
\text{ff} & \text{otherwise}
\end{cases}
\end{align*}
\]
Counterexamples

The semantic functions \(S_{NS} \) and \(S_{SOS} \) are not denotational definitions because they are not defined compositionally.

\[
S_{NS} : \text{Stm} \rightarrow \text{State} \\
S_{NS}[s] \sigma = \begin{cases}
\sigma' & \text{if } \langle s, \sigma \rangle \rightarrow_\downarrow \sigma' \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

\[
S_{SOS} : \text{Stm} \rightarrow \text{State} \\
S_{SOS}[s] \sigma = \begin{cases}
\sigma' & \text{if } \langle s, \sigma \rangle \rightarrow^* \sigma' \\
\text{undefined} & \text{otherwise}
\end{cases}
\]
The effect of executing a statement is described by the partial function \(S_{DS} \):

\[
S_{DS} : \text{Stm} \rightarrow (\text{State} \leftrightarrow \text{State})
\]

Partiality is needed to model non-termination.

The effects of evaluating expressions is defined by the functions \(A \) and \(B \).
Direct Style Semantics of IMP

- \texttt{skip} does not modify the state

\[
S_{DS}[[\text{skip}]] = \text{id}
\]
\[
\text{id} : \text{State} \rightarrow \text{State}
\]
\[
id(\sigma) = \sigma
\]

- \(x := e\) assigns the value of \(e\) to variable \(x\)

\[
S_{DS}[[x := e]]\sigma = \sigma[x \mapsto A[[e]]\sigma]
\]
Direct Style Semantics of IMP (cont’d)

- Sequential composition \(s_1 ; s_2 \)

\[
S_{DS}[s_1 ; s_2] = S_{DS}[s_2] \circ S_{DS}[s_1]
\]

- Function composition \(\circ \) is defined in a **strict** way
 - If one of the functions is undefined on the given argument then the composition is undefined

\[
(f \circ g)\sigma = \begin{cases}
 f(g(\sigma)) & \text{if } g(\sigma) \neq \text{undefined} \\
 & \text{and } f(g(\sigma)) \neq \text{undefined} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]
Direct Style Semantics of IMP (cont’d)

- Conditional statement \(\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end} \)

\[
S_{DS}[[\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}]] = \text{cond}(\mathcal{B}[b], S_{DS}[s_1], S_{DS}[s_2])
\]

- The function \(\text{cond} \)
 - takes the semantic functions for the condition and the two statements
 - when supplied with a state selects the second or third argument depending on the first

\[
\text{cond} : (\text{State } \rightarrow \text{Bool}) \times (\text{State } \leftrightarrow \text{State}) \times (\text{State } \leftrightarrow \text{State}) \rightarrow (\text{State } \leftrightarrow \text{State})
\]
Definition of \(\text{cond} \)

\[
\text{cond}: (\text{State} \rightarrow \text{Bool}) \times (\text{State} \leftrightarrow \text{State}) \times (\text{State} \leftrightarrow \text{State}) \\
\rightarrow (\text{State} \leftrightarrow \text{State})
\]

\[
\text{cond}(b, f, g)\sigma = \begin{cases}
 f(\sigma) & \text{if } b(\sigma) = \text{tt} \\
 g(\sigma) & \text{if } b(\sigma) = \text{ff} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

and \(f(\sigma) \neq \text{undefined} \)

and \(g(\sigma) \neq \text{undefined} \)
Semantics of Loop: Observations

- Defining the semantics of \texttt{while} is difficult
- The semantics of \texttt{while b do s end} must be equal to \texttt{if b then s; while b do s end else skip end}
- This requirement yields:

\[
S_{DS}[\texttt{while b do s end}] = \text{cond}(B[b], S_{DS}[\texttt{while b do s end}] \circ S_{DS}[s], \text{id})
\]

- We cannot use this equation as a definition because it is not compositional
Functionals and Fixed Points

\[S_{DS}[\text{while } b \text{ do } s \text{ end}] = \]
\[\text{cond}(B[b], S_{DS}[\text{while } b \text{ do } s \text{ end}] \circ S_{DS}[s], id) \]

► The above equation has the form \(g = F(g) \)
- \(g = S_{DS}[\text{while } b \text{ do } s \text{ end}] \)
- \(F(g) = \text{cond}(B[b], g \circ S_{DS}[s], id) \)

► \(F \) is a \textbf{functional} (a function from functions to functions)

► \(S_{DS}[\text{while } b \text{ do } s \text{ end}] \) is a \textbf{fixed point} of the functional \(F \)
Fixed Points: Examples

- x is a fixed point of function f if $f(x) = x$ holds

- Consider a function $f : \mathbb{N} \rightarrow \mathbb{N}$
 - $f(x) = x + 1$ does not have a fixed point
 - $f(x) = 0$ has exactly one fixed point, 0
 - $f(x) = x^2$ has two fixed points, 0 and 1
 - $f(x) = x$ has an infinite number of fixed points
Direct Style Semantics of IMP: Loops

- Loop statement `while b do s end`

 \[S_{DS}[\text{while } b \text{ do } s \text{ end}] = \text{FIX } F \]

 where \(F(g) = \text{cond}(B[b], g \circ S_{DS}[s], \text{id}) \)

- We write `FIX F` to denote the fixed point of the functional `F`:

 \[\text{FIX} : ((\text{State } \mapsto \text{State}) \to (\text{State } \mapsto \text{State})) \to (\text{State } \mapsto \text{State}) \]

- This definition of \(S_{DS}[\text{while } b \text{ do } s \text{ end}] \) is compositional
Example

Consider the statement

```
while x # 0 do skip end
```

The functional for this loop is defined by

\[
F'(g)\sigma = \text{cond}(B[x\#0], g \circ S_{DS}[\text{skip}], id)\sigma \\
= \text{cond}(B[x\#0], g \circ id, id)\sigma \\
= \text{cond}(B[x\#0], g, id)\sigma \\
= \begin{cases}
 g(\sigma) & \text{if } \sigma(x) \neq 0 \\
 \sigma & \text{if } \sigma(x) = 0
\end{cases}
\]
Example (cont’d)

The function

\[g_1(\sigma) = \begin{cases}
\text{undefined} & \text{if } \sigma(x) \neq 0 \\
\sigma & \text{if } \sigma(x) = 0
\end{cases} \]

is a fixed point of \(F' \)

The function \(g_2(\sigma) = \text{undefined} \) is not a fixed point for \(F' \)
Well-Definedness

\[S_{DS}[\text{while } b \text{ do } s \text{ end}] = \text{FIX } F \]

where \(F(g) = \text{cond}(B[b], g \circ S_{DS}[s], \text{id}) \)

- The function \(S_{DS}[\text{while } b \text{ do } s \text{ end}] \) is well-defined if \(\text{FIX } F \) defines a unique fixed point for the functional \(F \)
 - There are functionals that have more than one fixed point
 - There are functionals that have no fixed point at all
Examples

- F' from the previous example has more than one fixed point

$$F'(g)\sigma = \begin{cases} g(\sigma) & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{otherwise} \end{cases}$$

- Every function $g' : \text{State} \leftrightarrow \text{State}$ with $g'(\sigma) = \sigma$ if $\sigma(x) = 0$ is a fixed point for F'

- The functional F_1 has no fixed point if $g_1 \neq g_2$

$$F_1(g) = \begin{cases} g_1 & \text{if } g = g_2 \\ g_2 & \text{otherwise} \end{cases}$$
Fixed point theory for functions

Strict functions
Let $D_{⊥} \overset{\text{def}}{=} D \cup \{⊥\}$ with $⊥ \notin D$.
A function $f :: D_{⊥} \Rightarrow D_{⊥}$ is called **strict** iff $f(⊥) = ⊥$.

Complete partial order (CPO)
Let $\mathcal{D} = \overset{\text{def}}{=} D_{⊥} \Rightarrow D_{⊥}$ be the set of all strict functions from $D_{⊥}$ to $D_{⊥}$ and
$f \preceq g$ if $f(x) = g(x)$ or $f(x) = ⊥$.
(\mathcal{D}, \preceq) is a **pointed complete partial order** (i.e., every chain in \mathcal{D} has a least upper bound and \mathcal{D} has a least element)

Continuous functions
Let \mathcal{D} be a CPO; a monotonic function $F :: \mathcal{D} \Rightarrow \mathcal{D}$ is **continuous** iff for every chain X in \mathcal{D}:
$F(\bigvee X) = \bigvee \{ F(x) \mid x \in X \}$
Fixed point theorem

If \((\mathcal{D}, \preceq)\) is a pointed CPO and \(F : \mathcal{D} \Rightarrow \mathcal{D}\) is continuous, then \(\bigvee \{ F^i(\bot) \mid i \geq 0 \}\) is a fixed point of \(F\).

Remarks

Denotational semantics for imperative programs

- are based on fixed point theory for function domains
- allow for compositional definitions and related proof techniques