Chapter 0

Overview of Chapter

0. Preliminaries
0.1 Organisation
0.2 Course Overview

Preliminaries

Section 0.1

Organisation
0. Preliminaries

0.1 Organisation

Contact

• Arnd Poetzsch-Heffter
• Peter Zeller
• Christoph Feller
• Information about course: http://softech.informatik.uni-kl.de/
• Wiki for the course and Isabelle/HOL: http://svhol.pbmichel.de/

© Arnd Poetzsch-Heffter et al. TU Kaiserslautern

0. Preliminaries

0.1 Organisation

Dates, Time, and Location

• 3C + 3R (8 ECTS-LP)
• Monday, 11:45-13:15, room 48-462 (Lecture)
• Wednesday, 11:45-13:15, room 32-411 (Exercises)
• Thursday, 11:45-13:15, room 48-462/32-411 (Lecture/Exercises)

Exams

• Oral
• Topics: content of lecture and exercises
• Dates: after lecture period; dates will be announced

© Arnd Poetzsch-Heffter et al. TU Kaiserslautern

0. Preliminaries

0.1 Organisation

Literature

Further reading

© Arnd Poetzsch-Heffter et al. TU Kaiserslautern
Further reading (2)

Further reading (3)

Further reading (4)

Acknowledgements

- Dr. Jens Brandt for designing several of the slides
- Prof. Madlener for designing further parts of this course material
- Prof. Basin, Dr. Brucker, Dr. Smaus, Prof. Wolff, and the MMISS-project for the slides on CSMR
- Prof. Nipkow for the slides on Isabelle/HOL.
- Isabelle/HOL community for providing tools and theories
Topics and learning objectives

- Functional programming and modeling of software systems
- Higher-order logic
- Formal verification in Isabelle/HOL (and other theorem provers)
- Verification of algorithms
- Modeling and verification of transition systems
- Specification of programming languages
- Program logics and program verification
- Beyond interactive theorem proving

Course structure

1. Introduction
2. Functional programming and modeling
3. Foundations of higher-order logic
4. A proof system for higher-order logic
5. Verifying functions
6. Inductive definitions and fixed points
7. Programming language semantics
8. Program verification
1. Introduction

1.0 Overview of Chapter

1.1 Language: Syntax and Semantics
 Syntax
 Semantics

1.2 Proof Systems/Logical Calculi
 Hilbert Calculus
 Natural Deduction

1.3 Specification and Verification in Software Engineering

1.4 Summary

© Arnd Poetzsch-Heffter et al. TU Kaiserslautern

Goals of introduction

- Motivation for the topics
- Terminology: Specification, verification, logic
- Relation to other courses
- Review/introduce basic concepts in logic:
 1. Language: Syntax and semantics
 2. Proof systems
 2.1 Hilbert style proof systems
 2.2 Proof system for natural deduction

Section 1.1

Language: Syntax and Semantics

Subsection 1.1.1

Syntax
1. Introduction
1.1 Language: Syntax and Semantics

Syntax

Aspects of syntax
• used to designate things and express facts
• syntax of terms and formulas: constructed from variables and function symbols
• function symbols map a tuple of terms to another term
• constant symbols: no arguments
 constant can be seen as functions with zero arguments
• predicate symbols are considered as boolean functions
• sets of variables

Syntax of propositional logic

Example (Symbols)
• \(V = \{a, b, c, \ldots\} \) is a set of propositional variables
• two function symbols: \(\neg \) and \(\to \)

Example (Language)
• each \(p \in V \) is a formula
• if \(\phi \) is a formula, then \(\neg \phi \) is a formula
• if \(\phi \) and \(\psi \) are formulas, then \(\phi \to \psi \) is a formula

Syntactic sugar

Purpose
• extensions to the language that do not affect its expressiveness
• simplify the description in practice

Example

Abbreviations in propositional logic
• True denotes \(\phi \to \phi \)
• False denotes \(\neg \text{True} \)
• \(\phi \lor \psi \) denotes \(\neg (\neg \phi) \to \psi \)
• \(\phi \land \psi \) denotes \(\neg ((\neg \phi) \lor (\neg \psi)) \)
• \(\phi \leftrightarrow \psi \) denotes \(((\phi \to \psi) \land (\psi \to \phi)) \)
Subsection 1.1.2

Semantics

Purpose
- syntax only specifies the structure of terms and formulas
- semantics assigns a meaning to symbols, terms, and formulas
- semantics is often based on variable assignments, i.e., mappings that assign a value to all free variables
 - e.g., in propositional logic, variables are assigned a truth value

Bottom-up definition
- assignments give variables a value
- terms/formulas are evaluated based on the meaning of the function symbols

Interpretation/semantics (2)
Example (Semantics of propositional formulas)
Let \mathcal{J} be the standard interpretation of \neg and \rightarrow, i.e.,

<table>
<thead>
<tr>
<th>$\mathcal{J}(\neg)$</th>
<th>$\mathcal{J}(\rightarrow)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

The semantics of propositional formulas is defined by the function sem that takes a variable assignment ρ and a formula:

- $\text{sem} \rho p = \rho(p)$ for $p \in V$
- $\text{sem} \rho (\neg \phi) = \mathcal{J}(\neg)(\text{sem} \rho \phi)$
- $\text{sem} \rho (\phi \rightarrow \psi) = \mathcal{J}(\rightarrow)(\text{sem} \rho \phi, \text{sem} \rho \psi)$

Notation:
D_{bool} denotes the domain of boolean values, $D_{\text{bool}} = \{\text{true}, \text{false}\}$.

Example (Variable assignment in propositional logic)
A variable assignment ρ in propositional logic is a mapping
- $\rho : V \rightarrow D_{\text{bool}}$
1. Introduction

1.1 Language: Syntax and Semantics

Validity

Definition (Validity of propositional formulas)
• a formula ϕ is valid w.r.t. an assignment ρ if $\text{sem}_\rho \phi = \text{true}$
• a formula ϕ is a tautology if it is valid w.r.t. all assignments ρ
• Notations: $\rho \models \phi$ and $\models \phi$

Example (Tautology in propositional logic)
• $\phi \equiv p \lor \neg p$ is a tautology:
 - $\rho(p) = \text{false}$: $\text{sem}_\rho (p \lor \neg p) = \text{true}$
 - $\rho(p) = \text{true}$: $\text{sem}_\rho (p \lor \neg p) = \text{true}$

© Arnd Poetzsch-Heffter et al. TU Kaiserslautern

1.2 Proof Systems/Logical Calculi

Introduction

General Concept
Fundamental principle of logic: “Establish truth by calculation”
• purely syntactical manipulations based on transformation rules
• starting point: set of formulas Γ, often a given set of axioms
• deriving new formulas by deduction rules from given formulas Γ
• ϕ is provable from Γ if ϕ can be obtained by a finite number of derivation steps assuming the formulas in Γ
• notation: $\Gamma \vdash \phi$ means ϕ is provable from Γ
• notation: $\vdash \phi$ means ϕ is provable from a given set of axioms

Proof Systems/Logical Calculi

Styles of proof systems

Hilbert style
• easy to understand
• hard to use

Natural deduction style
• easy to use
• harder to learn
• . . .
Hilbert Calculus

Definition (Deduction rule)
- deduction rule d is a $n+1$-tuple

\[
\frac{\phi_1 \cdots \phi_n}{\psi}
\]
- formulas $\phi_1 \ldots \phi_n$, called premises of rule
- formula ψ, called conclusion of rule

Axioms
- let Γ be a set of axioms, $\psi \in \Gamma$, then ψ is a proof
- axioms allow to construct trivial proofs

Modus Ponens
- Rule example: $\frac{\phi \rightarrow \psi \ \phi}{\psi}$
- if $\phi \rightarrow \psi$ and ϕ have already been proven, ψ can be deduced
Hilbert calculus for propositional logic

Definition (Axioms of propositional logic)
All instantiations of the following schemas by arbitrary propositional formulas \(\phi, \chi, \psi \) are axioms:

- \(\phi \rightarrow (\chi \rightarrow \phi) \)
- \((\phi \rightarrow (\chi \rightarrow \psi)) \rightarrow ((\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \psi)) \)
- \((\neg \chi \rightarrow \neg \phi) \rightarrow ((\neg \chi \rightarrow \phi) \rightarrow \chi) \)

Remark: Thus, there are infinitely many axioms.

Proof example

Example (Hilbert proof)

- Language formed with the four propositional variables \(p, q, r, s \)
- Proof: \(p \rightarrow p \)
 Let
 \[
 \begin{align*}
 \psi_1 & \equiv (p \rightarrow ((p \rightarrow (p \rightarrow p)) \rightarrow ((p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p))) \\
 \psi_2 & \equiv (p \rightarrow (p \rightarrow p)) \\
 \psi_3 & \equiv (p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p) \\
 \end{align*}
 \]

 \[
 \frac{\psi_1 \quad \psi_2}{\psi_3} \quad p \rightarrow (p \rightarrow p) \\
 \]
 \[
 \frac{\psi_3}{(p \rightarrow p)} \\
 \]

Subsection 1.2.2

Natural deduction

Motivation

- introducing a hypothesis is a natural step in a proof
- Hilbert proofs do not permit this directly
 - can be only encoded by using \(\rightarrow \)
 - proofs are much longer and not very natural

Natural deduction

- proof style in which introduction of a hypothesis is a deduction rule
- deduction step can modify not only the proven propositions but also the assumptions \(\Gamma \)
Natural deduction

1. Introduction 1.2 Proof Systems/Logical Calculi

Definition (Natural deduction rule)
- deduction rule d is a $n+1$-tuple

$$
\Gamma_1 \vdash \phi_1 \quad \cdots \quad \Gamma_n \vdash \phi_n \\
\Gamma \vdash \psi
$$

- pairs of Γ (set of formulas) and ϕ (formulas): sequents
- proof: tree of sequents with rule instantiations as nodes

Discussion
- rich set of rules
- elimination rules: eliminate a logical symbol from a premise
- introduction rules: introduce a logical symbol into the conclusion
- reasoning from assumptions

Proof example

Example (Natural deduction proof)
- Language formed with the four proposition symbols p, q, r, s
- Proof: $p \rightarrow p$ by assumption and \rightarrow-introduction:

$$
\overline{p \vdash p}
$$

Natural deduction

1. Introduction 1.2 Proof Systems/Logical Calculi

Definition (Natural deduction rules for propositional logic)

- \lor-introduction

$$
\begin{align*}
\Gamma & \vdash \phi \\
\Gamma & \vdash \psi
\end{align*}
\quad
\begin{align*}
\Gamma & \vdash \phi \lor \psi \\
\Gamma & \vdash \phi \lor \psi
\end{align*}
$$

- \lor-elimination

$$
\begin{align*}
\Gamma & \vdash \phi \lor \psi \\
\Gamma, \phi & \vdash \xi \\
\Gamma, \psi & \vdash \xi
\end{align*}
\quad
\Gamma \vdash \xi
$$

- \rightarrow-introduction

$$
\begin{align*}
\Gamma, \phi & \vdash \psi \\
\Gamma & \vdash \phi \rightarrow \psi
\end{align*}
$$

- \rightarrow-elimination

$$
\begin{align*}
\Gamma & \vdash \phi \rightarrow \psi \\
\Gamma & \vdash \phi
\end{align*}
\quad
\Gamma \vdash \psi
$$

- assumption

$$
\begin{align*}
\Gamma, \phi & \vdash \phi
\end{align*}
$$
1. Introduction

1.3 Specification and Verification in SE

Section 1.3

Motivation

• Specifications: Models and properties \leadsto Spec-formalisms
• How do we express/specify facts? \leadsto Languages
• What is a proof? What is a formal proof? \leadsto Logical calculus
• How do we prove a specified fact? \leadsto Proof search
• Why formal? What is the role of a theorem prover? \leadsto Tools

Role of formal specifications

• Software and hardware systems must accomplish well defined tasks (requirements).
• Software engineering has as goal
 ▶ Definition of criteria for the evaluation of SW systems
 ▶ Methods and techniques for the development of SW systems that accomplish such criteria
 ▶ Characterization of SW systems
 ▶ Development processes for SW systems
 ▶ Measures and supporting tools
• Simplified view of a SD process:
 Definition of a sequence of actions and descriptions for the SW system to be developed. Process- and product models

Goal: A family of documents including the executable programs
Remarks

Development steps

- First specification: Global specification
 - Basis for the development
 - "Contract or Agreement" between developers and client

- Intermediate (partial) specifications:
 - Basis of the communication between developers

- Programs: Final products

Development paradigms

- Model-driven architecture
- Object-oriented design + program
- Transformation methods
- ...

Properties of specifications

- Consistency
- Completeness

 - Validation of the global specification regarding the requirements
 - Verification of intermediate specifications regarding the previous one
 - Verification of the programs regarding the specification
 - Verification of integrated final system w.r.t. to global specification
 - Activities: Validation, verification, testing, consistency, and completeness check
 - Tool support needed!

Requirements

- The global specification describes, as exact as possible, the properties of the overall system
- Abstraction of the how
 - apriori: Reference document, compact and legible.
 - aposteriori: Possibility to follow and document design decisions → traceability, reusability, maintenance
- Problem: Size and complexity of the systems.

Principles to be supported

- Refinement principle: Abstraction levels
- Structuring mechanisms: Decomposition and modularization techniques
- Object-orientation
- Verification and validation concepts

Requirements description → Specification language

- Choice of the specification techniques depends on kind of system. Often more than a single specification technique is needed. (What – How).
- Kinds of systems:
 - Pure function oriented (I/O), reactive-/embedded-/realtime systems.
- Problem: Universal specification technique (UST) difficult to understand, ambiguities, tools, size . . . e.g. UML
- Desired: Compact, legible, and exact specifications

Our focus: Specification of functional properties
Formal specifications

- A specification in a formal specification language defines
 - a model of the system and the possible behaviors
 - properties of the system

- 3 Aspects: Syntax, semantics, proof system
 - Syntax: What's allowed to write down?
 Specification as structured text often described by formulas from a logic
 - Semantics: What is the mathematical meaning of the specification?
 ~ Notion of models and mathematical structures
 - Proof system: Which properties of the system are true?

Tool support

- Syntactic support (grammars, parser,...)
- Verification: theorem proving (proof obligations)
- Prototyping (executable specifications)
- Code generation (generate programs from specifications)
- Testing (generate test cases from the specification)

Prerequisite for automation:
Formal syntax and semantics of the specification language

Declarative specification

Example
Restricted logic: e.g. equational logic
- Axioms: ∀X t₁ = t₂ t₁, t₂ terms.
- Rules: Equals are replaced with equals (directed).
- Terms = names for objects (identifier), structuring, construction of the object.
- Abstraction: Terms as elements of an algebra, term algebra.
Algebraic specification: Example STACK

Example
Elements of an algebraic specification: Signature (sorts (types), operation names with arities), Axioms (often only equations)

```
spec STACK using NATURAL, BOOL "names of known specs"
sorts stack "principal type"
ops init : → stack "empty stack"
    push : stack nat → stack
    pop : stack → stack
    top : stack → nat
    is_empty : stack → bool
    stack_error : → stack
    nat_error : → nat
```
(Signature fixed)

Axioms for Stack

```
FORALL s : stack n : nat
eqns  
is_empty (init) = true
    is_empty (push (s, n)) = false
    pop (init) = stack_error
    pop (push (s, n)) = s
    top (init) = nat_error
    top (push (s, n)) = n
```
Terms or expressions: top (push (push (init, 2), 3)) “means” 3

Semantics? Operationalization?
Apply equations as rules from left to right

Notion of rules and rewriting

Example: Sorting of lists over arbitrary types

Example (Cont.)

```
spec LIST[ELEMENT]
using ELEMENT
sorts list
ops nil : → list
    . : elem, list → list  ("infix")
    insert : elem, list → list
    insertsort : list → list
    case : bool, list, list → list
    sorted : list → bool
```

@Arnd Poetzsch-Heffter et al. TU Kaiserslautern

Example (Cont.)

eqns
\begin{align*}
\text{case}(\text{true}, l_1, l_2) &= l_1 \\
\text{case}(\text{false}, l_1, l_2) &= l_2 \\
\text{insert}(x, \text{nil}) &= x.\text{nil} \\
\text{insert}(x, y.l) &= \text{case}(x \leq y, x.y.l, y.\text{insert}(x, l)) \\
\text{insertsort}(\text{nil}) &= \text{nil} \\
\text{insertsort}(x.l) &= \text{insert}(x, \text{insertsort}(l)) \\
\text{sorted}(\text{nil}) &= \text{true} \\
\text{sorted}(x.\text{nil}) &= \text{true} \\
\text{sorted}(x.y.l) &= \text{if } x \leq y \text{ then sorted}(y.l) \text{ else false}
\end{align*}

Property: \text{sorted}(\text{insertsort}(l)) = \text{true}